RAILROAD BRIDGE SAFETY MANAGEMENT PROGRAM

Governing Bridges on the NMRX Railroad System owned by the
New Mexico Department of Transportation

Version 3.0 July 12, 2011

Prepared In Fulfillment of 49 CFR Part 237--Bridge Safety Standards
Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>VERSION</th>
<th>DESCRIPTION</th>
<th>AUTHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/11/2011</td>
<td>1.0</td>
<td>INITIAL DRAFT, BRIDGE UNIT</td>
<td>NMDOT</td>
</tr>
<tr>
<td>3/4/2011</td>
<td>1.1</td>
<td>REVIEW, RAIL UNIT</td>
<td>NMDOT</td>
</tr>
<tr>
<td>3/8/2011</td>
<td>2.0</td>
<td>FINAL</td>
<td>NMDOT</td>
</tr>
<tr>
<td>7/12/2011</td>
<td>3.0</td>
<td>REVISIONS BASED ON FRA COMMENTS</td>
<td>NMDOT</td>
</tr>
</tbody>
</table>
Program Contents

Section 1 Introduction 4
Section 2 Definitions 6
Section 3 Designation and Qualification of Individuals 10
Section 4 Structure Types and Components 14
Section 5 Bridge Inspections 20
Section 6 Bridge Inventory 31
Section 7 Bridge Load Capacities 32
Section 8 Repair and Modification of Bridges 37
Section 9 Document Records and Audits 39

Appendix A NMDOT Railroad Bridge Rehab/Replacement Prioritization List
Appendix B NMDOT Railroad Bridge Inventory
Appendix C NMDOT Railroad Bridge Inspection Report
Appendix D Railroad Bridge Condition Codes
Appendix E PONTIS Work Order Sample
Appendix F PONTIS Completed Work Order Sample
Appendix G Railroad Bridge Rating Form
SECTION 1 Introduction

The New Mexico Department of Transportation (NMDOT) is committed to maintaining the structural integrity and safe load capability of all our bridges across the NMRX (NMDOT-owned) railroad system with the protection of passengers, railroad employees and the surrounding public and environment foremost in mind. NMDOT has in place an internal comprehensive program to manage the safety and preservation of our railroad bridges that has been established under accepted railroad industry standards and practices, existing NMDOT inventory practices, as well as guidance previously put forth by the Federal Railroad Administration (FRA).

The FRA has issued a Final Rule requiring that railroad track owners adopt a bridge safety management program. NMDOT, being owner of a passenger commuter railroad and track segments which are part of the general railroad system of transportation and which carry more than ten scheduled passenger trains per week, herein formally presents its Railroad Bridge Management Program pursuant to CFR 49 Part 237 not later than the compliance date established under §237.31(b).

System Description

The NMRX railroad system consists of the Albuquerque, Santa Fe, and El Dorado Subdivisions.

The Albuquerque Subdivision is former BNSF (former ATSF) track and right-of-way purchased by NMDOT and is maintained and operated by Herzog Transit/Contracting Services. BNSF and Amtrak are both tenant railroads on the Albuquerque Subdivision.

The Santa Fe Subdivision is a combination of the construction of new track (18 miles), built under supervision of NMDOT in 2008, and former Santa Fe Southern Ry (former ATSF) track and right-of-way (5 miles). This Subdivision is also maintained and operated by Herzog Transit/Contracting Services. Santa Fe Southern Railway is a tenant railroad on the eastern end of this subdivision. The El Dorado Subdivision is former Santa Fe Southern Railway (former ATSF) track (13 miles) maintained and operated by Santa Fe Southern Railway. SFS is the exclusive operator on this segment.

NMDOT is responsible for overseeing bridge inspection and repair on all NMRX bridges. NMDOT works with Herzog to coordinate and approve the selection and scheduling of contract bridge engineers for annual bridge inspection as well as designs/repairs conducted on the Albuquerque and Santa Fe Subdivisions. NMDOT performs annual bridge inspections directly on the El Dorado Subdivision and coordinates with Santa Fe Southern Railway for maintenance and repairs. NMDOT is also responsible for conducting emergency bridge inspections on all subdivisions.

NMDOT is responsible for ensuring that all bridges are capable of safely carrying rail traffic, and for determining and specifying the maximum loads that may be operated over each bridge,
as well as ensuring that loads are not operated over bridges that exceed weight/height/width restrictions that are in effect. On the Albuquerque and Santa Fe Subdivisions, restrictions shall be issued as a General Track Bulletin by the NMRX dispatcher until such time as a General Order is issued as necessary. BNSF trainmasters shall be advised as well. For the El Dorado Subdivision, the Santa Fe Southern Railway shall be informed of any weight/height/width restrictions. SFS will convey the information to their crews through a track bulletin until a General Order is issued as necessary.
SECTION 2 Definitions (49 CFR §237.5)

2.1 GENERAL DEFINITIONS

ALBUQUERQUE SUBDIVISION: Segment of NMRX track formerly owned by BNSF, formerly ATSF between MP 932.2 and MP 834. Controlled by the NMRX dispatcher in Albuquerque NM.

BNSF: BNSF Railway

BRIDGE ENGINEER: A professional engineer licensed in the State of New Mexico with the requisite education, experience, and knowledge of railroad bridge design and operation. (§237.51 and § 237.57).

BRIDGE MODIFICATION: A change to the configuration of a railroad bridge that affects the load capacity of the bridge.

BRIDGE REPAIR: Remediation of damage of deterioration which has affected the structural integrity of a railroad bridge.

EDMS: Electronic Data Management System, which includes Pontis which is an electronic database that stores NMDOT bridge inspection data.

EL DORADO SUBDIVISION: A segment of NMRX track formerly owned by Santa Fe Southern Railway, formerly ATSF track, between MP 0.3 and 13.5, maintained and operated by Santa Fe Southern Railway (not under control of NMRX dispatcher).

HERZOG CONTRACTING: Provider of Track, Signal and Structure Maintenance and Inspection for NMRX-Controlled track through Operating Agency.

MAINTENANCE-OF-WAY (MOW) CONTRACTOR: a contractor hired by the New Mexico Department of Transportation for the purpose of maintaining the track right of way, including bridges.

NMDOT: New Mexico Department of Transportation

NMRX: NMDOT-owned railroad system (New Mexico Rail Runner Express)

NMRX-CONTROLLED: NMDOT-owned railroad system under the control of the NMRX dispatcher in Albuquerque, NM (i.e. Albuquerque and Santa Fe Subdivisions)

NMRX OPERATING AGENCY: Rio Metro Regional Transit District (RMRTD)

NMRX RAIL OPERATIONS CENTER: Train dispatcher for the NMDOT-owned rail system
RAILROAD BRIDGE: Any structure with a deck, regardless of length, which supports one or more railroad tracks, or any other under grade structure with an individual span length of 10 feet or more located at such a depth that it is affected by live loads. (§ 237.5)

RIO METRO REGIONAL TRANSIT DISTRICT (RMRTD): Operating Agency of the NMRX Railroad for NMDOT.

SFS: Santa Fe Southern Railway

SANTA FE SUBDIVISION: A segment of NMRX track consisting of new track and right-of-way constructed in 2008, and the former SFS right-of-way and track, formerly ATSF track, between MP 0.0 and MP 23.4. Controlled by the NMRX dispatcher in Albuquerque, NM.

TRACK OWNER: New Mexico Department of Transportation (pertains to 49 CFR §237.3)

2.2 BRIDGE DEFINITIONS

ARCH: A curved structure element primarily in compression, producing at its supports reactions having both vertical and horizontal components. Span type of a railroad bridge in bridge records.

BRIDGE: Any structure that carries a roadway (railroad) over a depression or obstacle, consisting of a distinct substructure; a distinct superstructure that directly supports the roadway (track structure) and is independent of length.

BRIDGE - BALLAST DECK: A bridge with a solid floor provided with drains and covered with ballast, to provide normal and uniform support for track and conforming generally to standard construction used in the same tracks as constructed on roadbed.

BRIDGE – OPEN DECK: A bridge in which the track is carried on top of the stringers (girders) or trusses.

BRIDGE RATING: The determination of the safe load capacity of a structure using Cooper E ratings based upon the lowest rating primary load carrying component.

CULVERT: A structure that provides an opening beneath an embankment. A culvert has a continuous cross-sectional perimeter (sidewalls, ceiling, and floor are continuous). Does not include conduits (utility, etc) and under-track drains.

ENGINEER: An NMDOT employee or qualified consultant competent through training and experience in the area of railroad bridge engineering.

EQUIPMENT RATING: The determination of a vehicle’s equivalent Cooper E rating based on its axle weights and spacing.
INSPECTOR: A NMDOT employee or qualified consultant competent through training and experience to detect and record deficiencies of structures.

INVENTORY: The active railroad structural asset list as maintained in PONTIS.

OBSERVATION: A visual check of a structure against established standards for proper utility. If a deficiency is noted an inspection is required.

OVERHEAD BRIDGE: Any structure passing over the track(s) constructed for the purpose of carrying railroads, highways, pedestrians, pipelines or other miscellaneous purposes and is supported by structural elements on one or both sides of the track(s). Signal Bridges are not included.

PONTIS: The computer database used by NMDOT to maintain all railroad bridge records.

PROFESSIONAL ENGINEER: Registered or licensed engineers in the United States who render engineering services to the public.

RECORDS: The documentation of structural asset history, layout, design, construction, inspection, and maintenance of the structure. These records may be either in electronic or paper form.

RETAILING WALL: A structure is designed and constructed to restrain and support a mass of earth that is subject to railroad loading.

SPAN: The out to out length of span for simple spans or the distance center to center of intermediate supports for continuous spans. For arches, span length is the measured horizontal distance between spring lines.

STRAIN: The distortion of a body produced by the application of one or more external forces and measured in units of length. In common usage, this is the proportional relation of the amount of distortion divided by the original length.

STRESS: The resistance of a body to distortion when in a solid or plastic state and when acting in an unconfined condition. Stress is produced by the strain (distortion) and holds in equilibrium the external forces causing the distortion. It is measured in pounds or tons. Within the elastic limit the strain in a member of a structure is proportional to the stress in that member.

STRUCTURE: An asset of the infrastructure such as a bridge that is built and designed to sustain a load.

SUBSTRUCTURE: The abutments, piles, piers, or other constructions built to support the span or spans of a bridge superstructure.

SUPERSTRUCTURE: The entire portion of the bridge structure that primarily receives and supports traffic loads and in turn transfers the loads to the bridge substructure.
TRESTLE: A bridge structure consisting of beam, girder or truss spans supported upon bents. The bents may be of the piled or of the frame type. When of framed timbers, metal or reinforced concrete they may involve two or more tiers in their construction. Trestle structures are designated as “wooden”, "frame", or "framed", "metal", "concrete", "wooden pile", "concrete pile", etc., depending upon or corresponding to the material and characteristics of their principal members.

TRUSS: A jointed structure having an open built web construction so arranged that the frame is divided into a series of triangular figures with its component straight members primarily stressed axially only. The triangle is the truss element and each type of truss used in bridge construction is an assemblage of triangles. The connecting pins are assumed to be frictionless.

2.3 BRIDGE COMPONENT DEFINITIONS

For Bridge Component definitions, refer to Section 4.2.2.
3.1 NMDOT RAILROAD BRIDGE MANAGEMENT ADMINISTRATION

NMDOT has designated the following individuals to administer the NMDOT Bridge Safety Management Program:

Ray Trujillo P.E., NMDOT
Railroad Bridge Engineer; Chief-Bridge Bureau; Railroad Bridge Design Engineer
Registered Professional Engineer. 13 years experience with bridge design, bridge inspection program oversight and bridge load capacity ratings. Completed Railroad Bridge Inspection Training.

Jeff Vigil P.E., NMDOT
Railroad Bridge Program Manager
Registered Professional Engineer. 6 years bridge management experience. Completed Railroad Bridge Inspection Training.

Gary Kinchen, P.E. NMDOT
Railroad Bridge Load Engineer
Registered Professional Engineer. Over 15 years experience with bridge design, bridge inspection program oversight and bridge load capacity ratings. Completed Railroad Bridge Inspection Training.

Ruben Padilla, NMDOT
Railroad Bridge Inspector
30 years of bridge inspection experience; 3.5 years in railroad bridge inspection and management. Completed Railroad Bridge Inspection Training.

William Craven, NMDOT
Acting Rail Manager

Rob Fine, NMDOT
Rail Engineering Coordinator
16 years railroad operation experience; train operations, track inspection and maintenance, and railroad bridge inspections. Completed University of Tennessee Railroad Bridge Inspection Course.

3.2 QUALIFICATION & DESIGNATION OF RAILROAD BRIDGE ENGINEERS (49 CFR §237.51)

NMDOT will designate individuals as a Bridge Engineer who meets the following criteria:
a) Competent to determine forces and stresses in railroad bridges and bridge components;

b) Can prescribe the safe loading conditions for railroad bridges;

c) Can prescribe inspection and maintenance procedures for railroad bridges;

d) Can design repairs and modifications to railroad bridges;

e) Has a degree in Civil Engineering—with an emphasis on structural engineering—from an accredited engineering curriculum;

f) Currently registered as a Professional Engineer in New Mexico

The following individuals are designated by NMDOT as Railroad Bridge Engineers:

Ray Trujillo P.E., NMDOT
Railroad Bridge Engineer; Manager-Bridge Bureau; Bridge Design Engineer

Jeff Vigil P.E., NMDOT
Railroad Bridge Program Manager

Gary Kinchen P.E., NMDOT
Railroad Bridge Load Rating Engineer

Dave Fitzwater, Wilson & Co.
Senior Railroad Engineer

Thelma Castro, Wilson & Co.,
Railroad Bridge Engineer

Andy Leifheit, Wilson & Co.
Railroad Bridge Inspector

3.3 QUALIFICATION AND DESIGNATION OF RAILROAD BRIDGE INSPECTORS
(49 CFR §237.53, §237.57)

NMDOT will designate an individual as Railroad Bridge Inspector who is determined by NMDOT to be technically competent to view, measure, report and record the condition of a railroad bridge and its components. Such person shall be designated to authorize or restrict train movement over the bridge according to its present condition or state of repair.

NMDOT and consultant railroad bridge inspectors must be capable of the following:

- Understand and carry out the inspection procedure
- Ability to access inspection points on each bridge
• Ability to measure condition of bridge components
• Ability to articulate and describe bridge conditions
• Have requisite experience and past history of bridge inspection and repair
• Ability to detect a potential bridge hazard to safe train operation
• Recommend to the proper authority that appropriate restrictions be placed on the operation of railroad traffic until a railroad bridge engineer has performed a review of the hazard, when necessary

The following individuals are designated by NMDOT as Railroad Bridge Inspectors:

Ray Trujillo P.E., NMDOT
State Bridge Engineer; Manager-Bridge Bureau; Bridge Design Engineer

Jeff Vigil P.E., NMDOT
Bridge Program Manager
Ruben Padilla, NMDOT
Bridge Inspector, Analyst

Gary Kinchen P.E., NMDOT
Bridge Load Rating Engineer

Dave Fitzwater, Wilson & Co.
Senior Railroad Engineer

Thelma Castro, Wilson & Co.
Railroad Bridge Engineer

Andy Leifheit, Wilson & Co.
Railroad Bridge Inspector
3.4 QUALIFICATION AND DESIGNATION OF RAILROAD BRIDGE SUPERVISORS
(49 CFR §237.55, §237.57)

NMDOT will designate individuals as a Railroad Bridge Supervisor who meets the following criteria:

An individual who is determined by NMDOT to be technically competent to supervise construction, modification or repair of a railroad bridge in conformance with standard or particular specifications, plans and instructions. Such person will be designated to authorize or restrict train movement over a bridge according to its present condition or state of repair.

The following individuals are designated by NMDOT as Railroad Bridge Supervisors pursuant to qualifications set forth in §237.55:

Ray Trujillo P.E., NMDOT
State Engineer; Manager- Bridge Bureau; Bridge Design Engineer

Jeff Vigil, P.E., NMDOT
Railroad Bridge Program Manager

Gary Kinchen, P.E., NMDOT
Railroad Bridge Load Rating Engineer

Ruben Padilla, NMDOT
Railroad Bridge Inspector

Ted Keener, Herzog Contracting Inc.
Project Manager
SECTION 4 Bridge Types and Components

4.1 BRIDGE STRUCTURE TYPES

Pictured below are various types of railroad bridge structures that may be found on the NMRX system. These Structure names are adopted for use in this Program. They are used within, but not limited to, documents such as bridge inventories and bridge inspections.
4.2 BRIDGE COMPONENTS

4.2.1 Bridge Diagrams

The following figures provide labeling of specific bridge components and are adopted and used in this Bridge Program. This labeling will be used by NMDOT to identify bridge components within, but not limited to, documents such as bridge inventories and bridge inspections.

Timber Pile Bent Schematic
4.2.2 Bridge Component Definitions

ABUTMENT: A substructure composed of stone, concrete, brick or timber supporting the end of a single span or the extreme end of a multispans superstructure and, in general, retaining or supporting the approach embankment placed in contact with it. (See also Retaining Walls, Wing Wall.)

BATTER PILE: A support pile driven in an inclined position to resist forces which act in other than a vertical direction. When located in a stream, river or other waterway, it sometimes functions as a cutwater in dividing and deflecting floating ice and debris.

BENT: A supporting unit of a trestle made up of vertical members connected at the top by a cap.

BRIDGE BEAM: A portion of the bridge structure receiving and transmitting vertical, transverse, or oblique stresses produced by externally applied loads, when supported at its end or at intermediate points and ends. The beam resists the development of internal bending or flexural stresses. It could be rolled metal I-shaped or H-shaped. An I-shaped piece or member composed of plates and angles or other structural shapes united by bolting, riveting or welding. In general, those types of pieces or members are described as built-up beams.

CAP: The top, horizontal member of a bent. It holds the vertical members in their proper place and distributes the superstructure load to them.

CHECK: A small lengthwise crack or separation of wood fibers, caused by superficial shrinkage of a timber

CHORD: A group of stringers between bents or piers that are fastened to each other.

DEFER TREATMENT: Bridge timbers that do not contain enough decay at this time to warrant treatment, but should be considered in 5-10 years.

DELAMINATION: Separation and flaking off of the grain on a heavy corroded piece of steel. It can lead to very heavy section loss to the member because as one section of corroded steel flakes off, it exposes the underlying steel to further corrosion.

DEPTH, BALLAST: The depth from the bottom of tie to top of sub ballast or sub grade.

DRIFT: Brush, logs, and other debris carried by high water. If it accumulates against a bridge, it should be removed to reduce fire hazards and pressure against the bridge.

DUMP BENT: The end bent of a bridge. There is usually a retaining wall or backwall next to the dump bent.

EFFLORESCENSE: Lime deposits on the surface of concrete casues by water leaching through tcracsk and porous concrete.
Girt Bracing: A horizontal member which spans from bent to bent and is usually fastened to a Sash Brace near the top of the piles or posts.

Groundline: In bridge piling, the portion from 2-3 feet below the ground level to 1-2 feet above. Rapid decay growth can take place.

Longitudinal Bracing: Horizontal structural members which span from bent to bent and are usually fastened to a sash brace, normally 11 to 15 feet down from the cap.

Pack Rust: Corrosion that has occurred between two joined pieces of steel. This corrosion expands and deforms the two adjoining pieces of steel apart.

Pile: A vertical structure member that has been driven into the ground.

Possible Reject: Refers to members not decayed or damaged sufficiently to be classified as rejects, but are deteriorated enough to be considered for replacement.

Post (Posting): Replacing a defective portion of a pile with a new section.

Pumping Bearing: Bearing is moving up and down under load.

Rail Anchor: A device attached to a rail to keep it from moving longitudinally as a result of temperature change or under traffic. Also called Anti-creeper.

Reject: A member that is severely damaged or decayed.

Riprap: Large stones, boulders, blocks of concrete, etc. placed around piles or piers to prevent scour.

Sash Brace: Horizontal member fastened to piles or posts of a bent to provide rigidity.

Settlement Crack: A crack in a structure caused by differential settlement, or movement of various portions of the substructure. Repairs to these cracks should not be performed until the settlement problem has been corrected.

Sill: Horizontal member supporting the posts of the bent.

Spalling: General deterioration and breaking up of the surface of the concrete due to age, reactive aggregates, water damage, freeze-thaw action, abrasion, or impact damage.

Stringer: A longitudinal bridge girder for supporting part of a deck or railroad track between bents or piers.

Structural Crack: A crack that has progressed in magnitude, either in width, depth or both, to the point that the structural integrity of the members is in jeopardy.
SURFACE CORROSION: Corrosion to upper surface of the steel. It is usually minor and in most cases does not result in heavy section loss.

SURFACE CRACK: A crack that extends only a few inches into the member, but not of sufficient magnitude to be of immediate concern. Without repair, though, a surface crack could progress into a Structural Crack.

SWAY BRACE: Diagonal member fastened to piles or posts of a bent to provide rigidity.

TELESCOPING BEARING: Bearing plate has beaten down into the concrete or stone bridge seat causing damage to the concrete or stone.

WING WALL: An extension wall of an abutment wall which retains adjacent earth and/or deflects or guides a stream into pipes, culverts, and the waterway of a bridge.

WORKING CRACK: A structural crack that has divided the member into two or more components in which movement can be detected when load is applied, and could possible permit differential settlement.
SECTION 5 Bridge Inspections

5.1 TYPES OF RAILROAD BRIDGE INSPECTIONS

5.1.1 Annual Railroad Bridge Inspections

This inspection is performed by the Railroad Bridge Inspector to determine the assessment of the railroad bridge condition by inspecting every railroad bridge component to identify deficiencies as well as the overall environment of the railroad bridge such as scour, drift, fire hazards, etc. The Inspection will result in reporting and recording deterioration and deficiencies before they present a hazard to safe train operation.

- Results of these inspections are recorded on the Annual Bridge Inspection Form and entered into the PONTIS Bridge Management Data Base.

- The PONTIS Bridge Management Program provides an opportunity to create and review the Railroad Bridge Inventory as well as develop Priority Listing for replacement or rehab.

- Detailed inspection procedures are to be conducted for every type of Railroad Bridge as described in the AREMA Bridge Inspection Handbook.

- All components for timber bridges including piles, timber sills, girders and all other timbers associated with the bridge shall be sounded with a hammer and areas showing any distresses will be indentified and documented and measured for any loss of section.

- Any deficiencies noted previously or newly discovered that need monitoring will be photographed and sketched and included in the bridge inspection report and reviewed by the Railroad Bridge Engineer and will serve as a record on any change of condition between inspections.

- If a deficiency is found that makes the railroad bridge unsafe for train operations, the Railroad Bridge Inspector must call the Dispatcher and Railroad Bridge Supervisor to stop the train operations until the railroad bridge is made safe for either normal or reduced train operations.

- If an area of a railroad bridge is not accessible at the time of inspection, the Railroad Bridge Inspector must note this condition on the inspection form and notify a Railroad Bridge Supervisor to make arrangements to provide adequate access.
5.1.2 Routine Railroad Bridge Inspections

This inspection is performed by the Maintenance of Way Contractor during track inspections during normal day-to-day activities that place them at any given railroad bridge.

- Each time the Maintenance Of Way Contractor is within a railroad bridge, he will make a visual observation of the bridge and environment and assess the condition.

- If during a Routine Railroad Bridge Inspection a deficiency is found that makes the railroad bridge unsafe for trains, Maintenance Of Way Contractor must call the Dispatcher and Railroad Bridge Supervisor to stop the train operations until the railroad bridge is made safe for either normal or reduced train operation.

5.1.3 Interim Railroad Bridge Inspection

- When the Annual Railroad Bridge Inspection identifies a substandard condition that is determined to allow train operations at reduced speeds or load restrictions, an Interim Bridge Inspection will be performed to review each deficiencies noted and define a frequency of inspection. The purpose of the Interim Railroad Bridge Inspection is to monitor identified deficiency at a railroad bridge component.

- The Railroad Bridge Inspector will visually observe and document the changes if any occur from previous inspections including photos.

- Inspection procedures are to be performed as detailed in the AREMA Bridge Inspection Handbook.

- If during a Interim Railroad Bridge Inspection a deficiency is found that makes the railroad bridge unsafe for trains, The Railroad Bridge Inspector must call the Dispatcher, Maintenance Of Way Contractor and the Railroad Bridge Engineer to stop the train operations until the railroad bridge is made safe for either normal or reduced train operations.

- The Interim Railroad Bridge Inspection Report shall be included in the PONTIS Bridge Management Data Base and filed with the bridge report.

5.1.4 Special Railroad Bridge Inspections

If a specific type of data or information is requested for a certain railroad bridge, the Railroad Bridge Inspector or The Railroad Bridge Engineer will perform the Special Railroad Bridge Inspection and inventory the requested data or information.

Examples of Special Railroad Bridge Inspections are as Follows:
• Updating Railroad Bridge Inventory data such as dimensions or types of existing or new components.

• Determining load ratings.

• Movement of heavy or dimensional loads.

5.1.5 Emergency Railroad Bridge Inspections

These Emergency Railroad Bridge Inspections are performed when a railroad bridge has been damaged by vehicle traffic impact, fire, high waters, washouts, weather or derailment of any other conditions. The procedure and depth of inspection is dictated by the severity of the incident and shall be determined by the Railroad Bridge Engineer. Detailed inspection procedures are detailed in the AREMA Bridge Inspection Handbook.

5.1.5.1 Accidents or Collision impacts railroad bridge over highway

• Train operation will be suspended until the bridge has been inspected and evaluated under the supervision of the Railroad Bridge Engineer or Railroad Bridge Inspector.

• Rail operation will resume normal operation when the Railroad Bridge Inspector or the Railroad Bridge Engineer determines that is safe to do so.

5.1.5.2 Train Derailment involving a railroad bridge

• Rail operation over the bridge will suspended until the bridge has been inspected.

• Rail operation occurs either normal or restricted only after consultation between the Railroad Bridge Inspector, Railroad Bridge Engineer, Railroad Bridge Supervisor, and Maintenance Of Way Contractor.

5.1.5.3 Floods or High Water events

• During, or shortly after a major storm event, the Railroad Bridge Inspector shall notify the Railroad Bridge Supervisor and the Railroad Bridge Engineer to alert the Dispatcher for possible high water getting into the ballast or over rails, any misalignment of rail or erosion along the embankments.

• The speed of trains shall be reduced as to permit safe operations until emergency inspection can be performed and conducted by Railroad Bridge Inspector or Railroad Bridge Bridge Engineer and it is determined that a hazard on longer exist.
- When performing an Emergency Inspection due to floods or high water the Railroad Bridge Inspector must observe closely the following:

- Railroad bridges with abutments piers (bents) on soil must be checked for scour especially spread footings or mud sills.
- Check for piles driven into granular soils if penetration is limited.
- Check for scour and erosion around abutments due to channel alignment and also check for drift and or debris.

5.1.5.4 Fires On Or Beneath Bridges

- Rail operation will be suspended until a determination of the structural integrity is made by the Railroad Bridge Engineer of the Railroad Bridge Inspector. Return to normal operation can occur when it was determined that the fire was such a minor nature that no primary load carrying members or components were compromised or affected.

5.2 SCHEDULING OF BRIDGE INSPECTIONS (49 CFR §237.101)

5.2.1 Annual Inspection (§237.101(a))

NMDOT shall schedule, or have scheduled, an inspection for each NMRX bridge at least once in each calendar year, with not more than 540 days between any successive inspections.

5.2.2 Deteriorated Condition (§237.101(b))

NMDOT shall inspect, or arrange to be inspected by a qualified individual, a bridge more frequently than specified above when a railroad bridge engineer determines that such inspection frequency is necessary considering the conditions noted on prior inspections, the type and configuration of the bridge, and the weight and frequency of traffic carried on the bridge.

5.2.3 Compromising Event (§237.101(c))

NMDOT shall inspect, or have inspected, each bridge immediately after notification of an event which may have compromised the integrity of the bridge, including but not limited to flood, fire, earthquake, derailment, or a vehicular impact. In the event of such events, all trains shall be halted until it can be determined if trains can safely pass over affected bridge or bridges at a speed determined to be safe.
5.2.4 Out of Service Bridge (§237.101(d))

NMDOT shall inspect, or have inspected, any railroad bridge by a Bridge Engineer that has not been in railroad service and not inspected in accordance with this section within the previous 540 days, prior to resuming railroad traffic over the bridge.

5.3 BRIDGE INSPECTION PROCEDURES (49 CFR PART §237.103)

Procedures for inspection of bridges will be specified by NMDOT Bridge Bureau and will be tailored to the configuration, conditions, traffic, and vulnerability of each bridge.

- When a structure requires routine maintenance, the inspector will document an exception in the inspection report and notify the maintenance-of-way manager.

- When an inspection reveals an unusual or critical condition, the inspector will notify a Bridge Supervisor and the NMDOT Bridge Bureau. Appropriate protection for the bridge will be immediately established, as described in Section 5.3.2. If necessary, the bridge will be reviewed by additional engineers.

- Inspection methods to be used include visual, NDT (Non-Destructive Testing), Arms Length and Hands-On. Ladders will be used as needed.

- Means of access for bridge inspectors include Hands-On inspections at Arms Length. When required, additional access equipment such as snooper trucks will be used.

- Inspections will detect, report, and protect deterioration and deficiencies of the bridge before it presents a hazard to safe train operation.

- Inspections will be conducted in accordance with the most current edition of the AREMA Bridge Inspection Handbook.

- Bridge inspection will be performed with safety procedures set forth in the AREMA Bridge Inspection Handbook.

- A list of bridges requiring more frequent inspection will be developed and maintained. The frequency of inspection will be determined by a NMDOT Bridge Engineer.

- Route Clearances will be measured in order to determine clearance on all bridges from any limiting horizontal or vertical obstructions. Route Clearances will be measured from centerline of track every five years. Data will be forwarded to tenant railroads operating over the line.

- Inspection records will be kept by the NMDOT Bridge Bureau and are available for review by the MOW contractor and the NMRX Operating Agency.
5.3.1 Bridge Component Identification

Railroad Bridge Units, Spans, and Individual Components shall be specifically identified within a Railroad Bridge Inspection Report by the following numbering system.

Bents, Spans, Stringers, Piles and other components shall be numbered sequentially (i.e. 1, 2, 3, 4…) in the direction toward increasing mileposts, and then from left to right while facing in the direction of increasing mileposts. Timetable Direction shall be used to identify the orientation of the railroad bridge. Timetable direction and increasing milepost direction for each subdivision is determined by the following:

<table>
<thead>
<tr>
<th>SUBDIVISION</th>
<th>ENDPOINTS</th>
<th>GEOGRAPHICAL DIRECTION</th>
<th>TIMETABLE DIRECTION</th>
<th>MILEPOSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuquerque</td>
<td>Lamy</td>
<td>North</td>
<td>East</td>
<td>Decreasing</td>
</tr>
<tr>
<td></td>
<td>Belen</td>
<td>South</td>
<td>West</td>
<td>Increasing</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>Santa Fe</td>
<td>North</td>
<td>East</td>
<td>Increasing</td>
</tr>
<tr>
<td></td>
<td>CP Madrid</td>
<td>South</td>
<td>West</td>
<td>Decreasing</td>
</tr>
<tr>
<td>El Dorado</td>
<td>CP Hondo</td>
<td>North</td>
<td>North</td>
<td>Increasing</td>
</tr>
<tr>
<td></td>
<td>Lamy</td>
<td>South</td>
<td>South</td>
<td>Decreasing</td>
</tr>
</tbody>
</table>
5.3.2 Remedial Actions

The following defines appropriate remedial actions for conditions revealed during bridge inspections.

<table>
<thead>
<tr>
<th>TYPE OF DEFECT</th>
<th>REMEDIAL ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 consecutive reject bridge ties on steel spans</td>
<td>Limit to 25mph until condition corrected</td>
</tr>
<tr>
<td>Over 6 consecutive feet of bridge open deck with missing tie anchor bolts</td>
<td>Limit to 25 mph until condition corrected</td>
</tr>
<tr>
<td>Broken stringers; 3 ply chord in same chord (maximum 14’6” span)</td>
<td>For 1 broken stringer, limit speed to 10mph until stringer is replaced or helper stringer is placed. For 2 broken stringers, take bridge out of service until stringers are replaced or helper stringers are placed.</td>
</tr>
<tr>
<td>Broken stringers; 4 ply chord in same chord (maximum 14’6” span)</td>
<td>For 2 broken stringers (larger than 8”x16”, limit speed to 10mph until stringers are replaced or helper stringer is placed. For 2 broken stringers (8” x 16” or less) take bridge out of service until stringers are replaced or helper stringers are placed.</td>
</tr>
<tr>
<td>Broken stringers: 5 ply chord in same chord (maximum 14’6” span)</td>
<td>For 3 broken stringers (larger than 8”x16”), limit speed to 10mph until stringers are replaced or helper stringers are placed. For 3 broken stringers (8”x16” or smaller) take bridge out of service until stringers are replaced or helper stringers are placed.</td>
</tr>
<tr>
<td>Spaced stringers under ballast decks</td>
<td>For 2 adjacent broken stringers on 7 stringer spans, take bridge out of service until stringers are replaced or helper stringers are placed.</td>
</tr>
<tr>
<td>Spaced stringers under ballast decks</td>
<td>For 2 nonadjacent broken stringers on 7 stringer spans, limit speed to 25 mph until stringers are replaced or helper stringers are placed.</td>
</tr>
<tr>
<td>Spaced stringers under ballast decks</td>
<td>For 3 adjacent broken stringers on 9, 10, or 11 stringer spans, take bridge out of service until stringers are replaced or helper stringers are placed.</td>
</tr>
<tr>
<td>Structural defect in Caps</td>
<td>If effective height of cap is reduced 2” under load or there is vertical split of 1” wide, or cap has lost 50% of bearing on piling, take appropriate action up to and including taking bridge out of service.</td>
</tr>
</tbody>
</table>
5.4 EMERGENCY EVENTS (49 CFR §237.105)

In the event of a natural or accidental event or other adverse condition where a railroad bridge may be adversely impacted, the NMRX Rail Operations Center will promptly notify designated Maintenance of Way Contractor personnel to inspect track and bridges. When a structure has been reported as being damaged in any way, the first competent individual to reach the site will immediately investigate the incident and will report back to the Dispatcher and immediate supervisors. The supervisor will in turn report the incident to the NMRX Operations Manager and Railroad Bridge Supervisor and who will in turn immediately notify the NMDOT Bridge Bureau and NMDOT Rail Manager. The NMDOT Rail Manager will report the incident to the NMDOT Risk Management Director.

If the initial inspection establishes that the damage does not affect the bridge's load carrying capacity, the NMDOT Railroad Bridge Engineer may authorized traffic to resume across the bridge. If the Railroad Bridge Inspector or Engineer is not readily available on site, a competent employee may convey information to them for assessing damage and load carrying capacity for placing track back in service. A follow-up inspection will be made.

If it is determined after initial inspection that traffic cannot be authorized for maximum authorized speed because of bridge damage, an appropriate remedial action will be taken or slow order be placed. The NMDOT Railroad Bridge Engineer will be contacted for technical assistance and further instructions if damage warrants.

If the Railroad Bridge Supervisor determines that the bridge is unsafe for passage of trains, they will notify the NMDOT Bridge Bureau and will immediately inform the NMRX Rail Operations Center that traffic over the bridge shall be immediately suspended until repairs that are necessary to restore the integrity of the bridge have been performed. Notifications will be properly documented and issued in current General Track Bulletins as necessary.

Resumption of traffic operations over the bridge cannot commence until inspection and review of the bridge repairs by the Bridge Engineer has been performed. Traffic over the bridge may resume only after the NMRX Rail Operations Center has received authorization from the Bridge Engineer, and will be noted on the Current General Track Bulletin.

Bridges with critical problems that must be monitored on a monthly or weekly basis will be tabulated for the bridge inspector's records. The frequent inspections will be performed until the problems have been repaired or the bridge has been replaced. If during one of these inspections, the bridge is determined to be unsafe, traffic over the bridge will be immediately suspended until repairs necessary to restore the integrity of the bridge are performed.
Fires

If a fire has damaged a bridge, traffic will not be allowed over the bridge until a qualified person has inspected the bridge.

Earthquakes

In the event of an earthquake being reported, the epicenter and magnitude must be determined.

If the magnitude is 5 or less, inspection is not required.

If the magnitude is 5 or greater, inspections must occur of each bridge for the distances contained in the following table. Coordination must be established with the NMRX Rail Operations Center and the NMRX Operations Manager, Maintenance-of-way Manager, NMDOT Bridge Bureau, NMDOT Rail Manager, and NMDOT Risk Manager must be contacted immediately.

<table>
<thead>
<tr>
<th>MAGNITUDE</th>
<th>RESPONSE</th>
<th>DISTANCE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5.0</td>
<td>No inspection required</td>
<td>N/A</td>
</tr>
<tr>
<td>5.0 to 5.99</td>
<td>Trains proceed at Restricted Speed until bridges have been inspected</td>
<td>40 miles</td>
</tr>
<tr>
<td>6.0 to 6.49</td>
<td>Trains stop until bridges have been inspected.</td>
<td>80 miles</td>
</tr>
<tr>
<td>6.5 to 6.99</td>
<td>Trains stop until bridges have been inspected</td>
<td>140 miles</td>
</tr>
<tr>
<td>7.0 to 7.49</td>
<td>Trains stop until bridges have been inspected</td>
<td>300 miles</td>
</tr>
<tr>
<td>7.5 or greater</td>
<td>Trains stop until bridges have been inspected</td>
<td>500 miles</td>
</tr>
</tbody>
</table>

Personnel permitted to authorize train operations over a bridge following an adverse event will include the following:

1) Railroad Bridge Inspector
2) Railroad Bridge Supervisor
3) Railroad Bridge Engineer

5.4 COMPONENTS SUBMERGED/SUBJECT TO WATER FLOW (49CFR §237.105(b))

Bridge Inspections will include the detection of scour or deterioration of bridge components that are submerged, or that are subject to water flow. Inspections of bridges will include measuring and recording the condition of substructure support at locations subject to erosion.
from moving water. Underwater inspections are not required on NMRX railroad bridges as water depth does not require such inspections.

5.5 CONDUCT OF BRIDGE INSPECTIONS (49 CFR §237.107)

Bridge Inspections will be conducted under the supervision of an NMDOT-designated Railroad Bridge Inspector. The inspector will be responsible for ensuring the accuracy of the inspection and the compliance with this program.

5.6 BRIDGE INSPECTION REPORTS/RECORDS (49 CFR §237.109)

The record of each bridge inspection will be prepared from notes recorded the day of the inspection by the Bridge Inspector. The inspection will be supplemented with sketches and photographs as needed. The NMDOT Bridge Inspection Form contains a template of bridge structures to facilitate recording of notes and deficiencies. A sample is included in Appendix D.

- The inspection will be dated at the time the physical inspection is conducted.
- The inspection must be signed by the Bridge Inspector.
- The NMDOT Bridge Inspection Form includes the following in accordance with §237.109:
 - Precise identification of the bridge. Milepost numbers will be placed or painted on each bridge.
 - The condition of components inspected sufficient to adequately describe and interpret the report. The form contains condition rating criteria for consistent evaluations.
 - The date of the inspection.
 - The signature of the Bridge Inspector.
 - The type of inspection performed.
 - Identification of any item that would require review by the Railroad Bridge Engineer.
 - Identification of any restriction placed on the bridge at the time of inspection.
 - When an inspection does not encompass the entire bridge, the portions of the bridge which were inspected will be identified in the report.
Each inspection report will be placed in the NMDOT PONTIS System; hard copy and electronic copy saved in EDMS electronic file net system within 30 days, but no later than 120 days, following completion of the bridge inspection.

Consultant inspectors shall confirm inspection of a bridge with the NMDOT Bridge Bureau within 7 days after the actual bridge inspection.

Consultant inspectors shall prepare and submit final inspection reports to NMDOT Bridge Bureau within 30 days.

Once then NMDOT Bridge Bureau has received field inspection reports, All information will be recorded in the PONTIS System within seven days. Level of detail to be recorded is shown by a sample bridge inspection form is included in Appendix D.

Record Retention: The retention period for bridge inspection records will be kept in the Department’s Document Control System permanently.

Records of underwater inspections will be retained at least until the completion and review of the next underwater inspection for each bridge.

If the Bridge Inspector, Bridge Supervisor, or Bridge Engineer discovers a deficient condition on a bridge that affects the immediate safety of train operations, that person will report the condition promptly to the NMRX Rail Operations Center. This notification will be made for the purpose of ensuring the safety of train operations.

A sample Bridge Inspection Form to be used for all NMDOT Railroad Bridge inspections is included in the Appendices of this document.

5.7 REVIEW OF BRIDGE INSPECTION REPORTS (49 CFR §237.11)

A NMDOT Bridge Engineer shall review inspection reports for adherence to both schedule and inspection procedures.

A NMDOT Bridge Engineer shall evaluate whether any items on the inspection report present a potential hazard to safety.

The Bridge Engineer may prescribe any necessary modifications to the inspection procedures or inspection frequency for a particular bridge.

NMDOT, through its contractor, will schedule any necessary repairs or modifications to a particular bridge required to maintain its structural integrity. This work will either be performed by contractors hired by NMDOT or the Rio Metro Maintenance of Way contractor.
SECTION 6 Bridge Inventory

6.1 BRIDGE INVENTORY CONTENTS (49 CFR §237.33(a))

The New Mexico Department of Transportation is responsible for ensuring that bridge inventory records are complete and accurate. Each bridge is assigned the following: (Refer to ‘Appendix C’ for Inventory Form sample):

- Milepost location and subdivision
- Bridge Location with geographic coordinates
- Name of feature crossed by the bridge
- Number of tracks
- Number of bridge spans
- Lengths of spans
- Substructure type of construction
- Superstructure type of construction
- Deck type of construction
- Overall bridge length
- Dates of construction (if known)
- Dates of major renovation (if any)
- Dates of strengthening/repair work (if any)
- Names of companies responsible for maintenance of the bridge, or last known repairs
- Bridge Safe Load Capacity, including when and who made the determination, and what method was used
- Photograph(s) of the bridge
SECTION 7 Bridge Load Capacities

7.1 DETERMINATION OF BRIDGE LOAD CAPACITY (49 CFR §237.71, §237.33(b))

The NMDOT is responsible for determining the safe load capacity of each NMRX bridge in operation throughout all subdivisions of The New Mexico Department of Transportation’s rail operation. Safe load capacities shall be expressed as load ratings and shall be calculated and documented in accordance with this section.

The load ratings shall be documented in this Bridge Management Program, along with the method by which the capacity was determined. REFER TO “RAILROAD BRIDGE RATING FORM” IN APPENDIX C FOR EXAMPLE RATING FORM.

The design records for bridge replacement or new bridge construction shall state the load ratings that are achieved by the design and construction.

Load ratings are to be determined by a Railroad Bridge Engineer licensed in the State of New Mexico. All load rating methods shall be in accordance with latest edition of the AREMA Manual for Railway Engineering, published by the American Railway Engineering and Maintenance of Way Association.

Load rating calculations shall be based on the existing design plans and any modification records, only if the bridge configuration substantially conforms to these records. In all other cases, the load capacity shall be based on actual member measurements and properties, or other acceptable methods as determined by a Railroad Bridge Engineer.

Existing wooden trestle bridges may be load rated by a Railroad Bridge Engineer through accepted industry means using engineering judgment in lieu of structural calculations. In such cases, the Railroad Bridge Engineer will first inspect the bridge.

The New Mexico Department of Transportation has load rated all bridges pursuant to 49 CFR Part 237.71(e).

Any actions or conditions that substantially alter a bridge member’s load capacity shall be cause for determining new load ratings. Normally, the decision of whether or not to update a bridge’s load ratings will be based on information from the annual bridge inspection. Where an inspection reveals that, in the determination of the Railroad Bridge Engineer, the condition of a bridge or a bridge component might adversely affect the ability of the bridge to carry the traffic being operated, a new load rating shall be determined. New load ratings shall be considered if a member condition rating drops to “4” or below.

Load capacity ratings shall be determined at both normal and maximum load conditions as defined by AREMA.
Load capacity ratings shall be expressed in terms of an equivalent Cooper loading. Operation of equipment that produces forces greater than the normal capacity shall be subject to any restrictions or conditions that may be prescribed by the Railroad Bridge Engineer. These restrictions and/or conditions will be issued as specified in Section 7.2.

7.2 LOAD CONTROL FOR BRIDGES (49 CFR §237.73)

NMDOT will issue bridge weight and size restriction instructions to the NMRX Dispatcher and BNSF through the NMRX operations manager to prevent the operation of cars, locomotives and other equipment that would exceed the capacity or dimension of NMRX bridges. The NMRX dispatcher shall include restrictions under General Track Bulletins issued until such time as a General Order can be published as necessary. General Track Bulletins and General Orders will be issued to personnel at NMRX, BNSF, and Amtrak responsible for configuration and operation of trains over NMRX bridges on the Albuquerque and Santa Fe Subdivisions. Restrictions will also be updated through the BNSF Clearance Bureau. NMDOT will issue bridge restrictions on the El Dorado Subdivision to management personnel at Santa Fe Southern Railway who will in turn be responsible for issuing restrictions to their operating personnel.

- The instructions regarding weight will be expressed in terms of maximum equipment weights, and either minimum equipment lengths or axle spacing, as determined by the Bridge Engineer.
- Dimensions will be expressed in terms of feet and inches of cross section and equipment length.
- Dimensions of equipment will also include height above top-of-rail for each cross section, as well as the width of the car of the shipment at that height.

Route Clearances will be measured in order to determine clearance on all bridges from any limiting horizontal or vertical obstructions. Route Clearances will be measured from centerline of track on an annual basis. Clearances will be forwarded to tenant railroads operating over the line.

7.2.1. Weight Capacity

Weight Allowances per car length are described in the following table, as found in the BNSF System Special Instructions. Each subdivision or segment of the NMRX system shall be assigned a Restriction Class. Each train operating over such subdivision or segment of track shall comply to the assigned restriction. Restrictions for each subdivision are noted and referenced in the NMRX Employee Timetable, Item 2. Weight restrictions are determined or evaluated based upon current bridge load ratings.
Weight Restrictions

<table>
<thead>
<tr>
<th>Car length</th>
<th>Axle</th>
<th>Typical Car Type</th>
<th>Maximum Weight Restriction Class (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 35'0"</td>
<td>4</td>
<td>Hopper</td>
<td>A: 89 B: P C: 89 D: P E: P F: P G: P H: P</td>
</tr>
<tr>
<td>≥ 49'6"</td>
<td>4</td>
<td>Hopper, Flat, Tank, Box, Gondola</td>
<td>A: 143* B: 143* C: 143 D: 143 E: 136 F: 134 G: 134 H: 131.5</td>
</tr>
</tbody>
</table>

P = Prohibited unless specially authorized

* Up to 143 tons allowed for multiple car movements, and 143+ tons (up to 157.5 tons) allowed for a Single Car movement.

Single Car Movement: A 143+ car separated from locomotive or other 143+ car by at least one car weighing not more than 143 tons. Maximum of ten 143+ cars up to 157.5 tons allowed in a single train.
Subdivision Restrictions

<table>
<thead>
<tr>
<th>Subdivision</th>
<th>Milepost Segment</th>
<th>Weight Restriction Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuquerque</td>
<td>834.0 – 915.0</td>
<td>B</td>
</tr>
<tr>
<td>Albuquerque</td>
<td>915.0 – 932.1</td>
<td>A</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>0.0 – 22.3</td>
<td>A</td>
</tr>
<tr>
<td>El Dorado</td>
<td>0.33 – 13.5</td>
<td>E</td>
</tr>
</tbody>
</table>

Rail Cars that exceed the restrictions set forth above will be considered excessive-weight cars. Before any excessive-weight loads can be moved in a train over NMDOT-owned track, a prior authorization must be granted by the Bridge Engineer. Tenant freight railroads must notify the NMRX Operations Manager who will forward to the NMDOT Bridge Unit for evaluation.

Albuquerque Subdivision

BNSF (the sole tenant freight railroad over NMRX Albuquerque Subdivision) must determine that proper authorization has been granted for movement over the NMRX system. BNSF shall notify NMRX operations manager of all inbound and outbound excessive-weight loads that are scheduled to move over NMDOT-owned track. NMRX will in turn copy the NMDOT Rail Unit and NMDOT Bridge Unit of all excessive-weight loads for further evaluation.

El Dorado Subdivision

SFS (the sole tenant freight railroad operating over the El Dorado Subdivision) shall be notified by BNSF, the interchanging freight railroad, of all inbound excessive-weight loads for interchange with SFS. SFS will in turn notify the NMDOT Rail Unit and NMDOT Bridge Unit of all excessive-weight loads scheduled to move over the El Dorado Subdivision.

Santa Fe Subdivision

Freight movements are prohibited on the Santa Fe Subdivision between MP 0.0 and 17.9. Between MP 17.9 and MP 22.3, Procedures will be followed as specified for the El Dorado Subdivision.

7.2.2. Dimension Capacity

Maximum width and height dimensions for normal loads shall be 11 feet wide and 17’ above the rail for the NMRX system. Loads that exceed these dimensions shall be considered excessive-dimension, or dimensional loads. Dimensional loads shall not move over the NMRX system without prior authorization from the Railroad Bridge Engineer.
Albuquerque Subdivision

Before any dimensional or special shipment requiring clearance verification can be moved in a train over the Albuquerque Subdivision, BNSF (the sole tenant freight railroad over NMRX Albuquerque Subdivision) must determine that proper authorization has been granted for movement over NMDOT-owned railroad track (bridges). BNSF shall notify NMRX of all inbound and outbound dimensional loads that are scheduled to move over NMDOT-owned track. NMRX will in turn copy the NMDOT Rail Unit and NMDOT Bridge Unit of all dimensional loads for further evaluation. In the event that authorization is granted, the NMRX dispatcher will be notified.

El Dorado Subdivision

SFS (the sole tenant freight railroad operating over the El Dorado Subdivision) shall be notified by BNSF, the interchanging freight railroad, of all inbound dimensional loads for interchange with SFS. SFS will in turn notify the NMDOT Rail Unit and NMDOT Bridge Unit of all dimensional loads scheduled to move over the El Dorado Subdivision.

Santa Fe Subdivision

Freight movements are prohibited on the Santa Fe Subdivision between MP 0.0 and 17.9. Between MP 17.9 and MP 22.3, Procedures will be followed as specified for the El Dorado Subdivision.

NMRX will approve the movement of dimensional loads over the Albuquerque Subdivision with consultation from the NMDOT Bridge Unit when required. SFS will approve the movement of dimensional loads over the El Dorado Subdivision with consultation from the NMDOT Bridge Unit when required.
SECTION 8 Repair and Modification of Bridges

8.1 DESIGN (49 CFR §237.131)

Projects involving repair or modification which change the capacity of a bridge or the stresses in any primary load-carrying component of a bridge or the replacement of existing bridges will be designed by a Bridge Engineer. The work shall be performed by the MOW contractor.

- Bridge records will be updated by the NMDOT Bridge Bureau to reflect the work performed through these contracts.
- The design will specify the manner in which railroad traffic or other live loads will be permitted on the bridge while it is being modified or repaired.
- Standards and procedures for designs or modifications will be developed by a Bridge Engineer.
- Oversight and quality control of major modifications or bridge replacements will be the responsibility of both the MOW contractor and NMDOT.
- The design Bridge Engineer will review construction in accordance with his obligation as the Engineer-of-Record.
- Records of repairs, modifications, or replacements will be made and kept of each bridge.
- The Bridge Inventory for each bridge will be updated within 30 days of receipt of repair records.
- New bridge capacity ratings will be determined following major repairs to an existing bridge.
- All bridge records of repair or modification shall be maintained by the NMDOT Bridge Bureau. This will include the following:
 - Engineering Design Documents
 - As-built construction plans
 - Records of modifications or repair by MOW contractors
• Bridge documents will be filed by subdivision and milepost, and contain all notes and plans as well as reports discussing any aspect of a bridge.

Routine ongoing repairs: The bridge crews managed by MOW contractors as part of their regular maintenance of the timber bridges consisting of minor repairs and replacement of a limited number of structural members will use standard details as provided by the Railroad Bridge Engineer. These repairs will be approved or authorized by the NMDOT Bridge Engineer.

8.2 SUPERVISION OF REPAIRS AND MODIFICATIONS (49 CFR §237.133)

Each modification of repair will be performed under the immediate supervision of a Bridge Supervisor designated by NMDOT per criteria put forth in Section 3 of this Program. The Bridge Supervisor will ensure that railroad traffic or other live loads permitted on the bridge under repair are in conformity with the specification of the design.

Following completion of bridge repairs, modifications or replacement, the Bridge Supervisor will notify the NMRX Rail Operations Center of the time and conditions the bridge is ready to receive traffic. The bridge will remain under the continual supervision of a Bridge Supervisor and temporary speed restrictions until such time as the Bridge Supervisor determines normal track speed can safely be established.
9.1 DOCUMENTS AND RECORDS (49 CFR §237.155)

- NMDOT shall create and maintain all the required records in the NMDOT PONTIS Bridge Management System.

- Electronically generated reports in the bridge management program shall be available in the PONTIS system. These records shall be monitored by NMDOT bridge bureau to ensure a high degree of accuracy.

- All bridge records will be made available for inspection by the Federal Railroad Administration upon request.

9.2 SYSTEM SECURITY OF CONTROLLED DOCUMENTS (49 CFR §237.155(b))

- NMDOT maintains proper security for the Records Management System.

- The PONTIS system has a secure account user access feature. Access is only gained through a proper username and password.

- Amendments can be made to the document without altering the original document. The amendments are stored as separate documents. Each amendment to a record will automatically identify the person making the amendment.

- The NMDOT PONTIS system provides for the maintenance of records as originally submitted without corruption or loss of data.

9.3 AUDITS

9.3.1 Audit of bridge inspection reports and records (49 CFR §237.153)

- The MOW Contractor will perform yearly inspections of the bridges and forward documentation of the inspections to the NMDOT Bridge Bureau.

- NMDOT Bridge Bureau Bridge Engineer will review the results of the inspections and in conjunction with the MOW Contractor will determine priorities for bridges repairs and/or replacement that may be necessary.

- NMDOT Bridge Bureau will conduct periodic audits of inspection reports by sampling reports to determine whether the reports accurately describe the condition of the bridges and whether the program itself is effectively providing for the continued safety of
the bridge. A yearly audit of 10 percent of NMDOT Bridge Bureau bridges will be sampled and tested.

- Bridge Personnel from the NMDOT Bridge Bureau will sample bridges to assure the quality and accuracy of the inspection report provided by the MOW contractor is intact. A record of each audit will be placed in the file for the bridge audited. An audit report will be generated by the NMDOT Bridge Bureau and presented to and discussed with the MOW contractor, including the Bridge Inspector. If required, changes to the inspection report resulting from the audit will be agreed upon, with the revised inspection report becoming the official record for that bridge, replacing the former inspection report. If necessary, changes to inspection procedures will also be applied as corrective improvement to the inspection program.

- Each bridge inspection will also serve to corroborate the accuracy of the inventory for that bridge.

9.3.2 Audit of operations regarding weight and configuration (49 CFR §237.151)

NMDOT Bridge Bureau will conduct periodic audits of railroad operation records to ensure restrictions are in place concerning the movement of railroad equipment of exceptional weight or configuration.

9.3.3 Overall program audit (49 CFR §237.151)

NMDOT Bridge Bureau will annually conduct an audit to determine the effectiveness of the Bridge Safety Management Plan. Key performance indicators will be tracked and evaluated for program compliance, including:

- Meeting program schedules for annual inspections without exceeding time-between-inspections;

- Accuracy and completeness of inspection records as determined thru engineering sampling of bridge reports;

- Timely repairs to bridges within recommended timeframes as determined by the Bridge Engineer.

- Sampling of Document Control System storage and retrieval records via a ten percent sampling.

- Evaluation of safe load capacities due to deteriorating conditions.
APPENDIX A
NMDOT RAILROAD BRIDGE REHAB/REPLACEMENT PRIORITIZATION LIST SAMPLE
Railroad - Bridge Prioritization Status Listing

Date: June 2010
By: Bridge Bureau

<table>
<thead>
<tr>
<th>Priority #</th>
<th>Bridge No.</th>
<th>Facility Carried</th>
<th>Siding</th>
<th>Feature Intersected</th>
<th>Location</th>
<th>Length</th>
<th>Width</th>
<th>Deck Area</th>
<th>Material</th>
<th>Design</th>
<th>Deck</th>
<th>Substrate</th>
<th>Substr</th>
<th>Cultvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority 1</td>
<td>AB268.120</td>
<td>Albuquerque Sub</td>
<td>Los Lunas</td>
<td>Los Lunas Approach</td>
<td>0.25 M N of NM-4</td>
<td>144</td>
<td>14</td>
<td>0.03 Timber</td>
<td>Steel</td>
<td>Grade</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>N</td>
</tr>
<tr>
<td>Priority 2</td>
<td>AB268.120</td>
<td>Albuquerque Sub</td>
<td>Los Lunas</td>
<td>Los Lunas Approach</td>
<td>0.25 M N of NM-4</td>
<td>144</td>
<td>14</td>
<td>0.03 Timber</td>
<td>Steel</td>
<td>Grade</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>N</td>
</tr>
</tbody>
</table>

Note: This table lists the prioritized bridges across various locations and details such as the facility carried, siding, feature intersected, location, length, width, deck area, material, design, deck, and substrate.
APPENDIX B
NMDOT RAILROAD BRIDGE INVENTORY
<table>
<thead>
<tr>
<th>BRIDGE NO</th>
<th>SUBDIVISION</th>
<th>SIDING</th>
<th>FEATURE INTERSECTED</th>
<th>LOCATION</th>
<th>LENGTH</th>
<th>MATERIAL</th>
<th>MAIN</th>
<th>DESIGN MATERIAL</th>
<th>DECK</th>
<th>SUPER</th>
<th>SUB</th>
<th>CULVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB0056.70</td>
<td>Albuquerque Sub</td>
<td>Kinsey Siding</td>
<td>San Jose La Brea</td>
<td>0.4 mi South of Rio Bravo</td>
<td>11</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>AB0057.50</td>
<td>Albuquerque Sub</td>
<td>Albuquerque</td>
<td>ANAPA South Channel</td>
<td>1.72 MI S of Rio Bravo</td>
<td>96</td>
<td>Steel</td>
<td>Stringer</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0060.70</td>
<td>Albuquerque Sub</td>
<td>Mountair View Siding</td>
<td>High Water Crossing</td>
<td>50</td>
<td>Timber</td>
<td>Timber</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB0093.20</td>
<td>Albuquerque Sub</td>
<td>Los Pichones</td>
<td>High Water Crossing 1</td>
<td>0.132 M S. Salida Sand</td>
<td>42</td>
<td>Steel</td>
<td>Steel</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0091.60</td>
<td>Albuquerque Sub</td>
<td>N. Of Isleta Pueblo</td>
<td>Highwater Crossing 1</td>
<td>10 M S Of 125 Along RR</td>
<td>14</td>
<td>Timber</td>
<td>Timber</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0093.10</td>
<td>Albuquerque Sub</td>
<td>Isleta Pueblo</td>
<td>Rio Grande</td>
<td>1.25 M S of Tributary RD 16</td>
<td>684</td>
<td>Steel</td>
<td>Steel</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0093.80</td>
<td>Albuquerque Sub</td>
<td>Isleta Pueblo</td>
<td>High Water Crossing 2</td>
<td>32 M S Of Tributary Road</td>
<td>80</td>
<td>Concrete</td>
<td>Sub</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0093.90</td>
<td>Albuquerque Sub</td>
<td>Isleta Pueblo</td>
<td>Belen High Live Canal</td>
<td>0.5 M Of NM 147</td>
<td>10</td>
<td>Steel</td>
<td>Steel</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0094.20</td>
<td>Albuquerque Sub</td>
<td>Isleta Pueblo Sitting</td>
<td>Belen High Canal</td>
<td>1021 S Of NM 317 & 314</td>
<td>56</td>
<td>Timber</td>
<td>Sub</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0095.70</td>
<td>Albuquerque Sub</td>
<td>Bosque Farms</td>
<td>Isleta Drain</td>
<td>3.48 M S of NM 317 & 314</td>
<td>13</td>
<td>Timber</td>
<td>Stringer</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0092.00</td>
<td>Albuquerque Sub</td>
<td>Los Lomas</td>
<td>Los Lomas Arroyo</td>
<td>25 M N Of NM 6</td>
<td>14</td>
<td>Timber</td>
<td>Stringer</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0092.36</td>
<td>Albuquerque Sub</td>
<td>Belen Siding</td>
<td>Los Chavez Arroyo</td>
<td>105 M S Of Los Urras Lane</td>
<td>10</td>
<td>Steel</td>
<td>Stringer</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0092.80</td>
<td>Albuquerque Sub</td>
<td>Belen Siding</td>
<td>Los Chavez Ditch</td>
<td>Between Los Chavez & Santa</td>
<td>10</td>
<td>Steel</td>
<td>Stringer</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0091.01</td>
<td>Albuquerque Sub</td>
<td>Belen Siding</td>
<td>Old Belen Arroyo</td>
<td>570 M N Of Molina Rd</td>
<td>19</td>
<td>Steel</td>
<td>Stringer</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0091.70</td>
<td>Albuquerque Sub</td>
<td>Belen Siding</td>
<td>Sand inhal Rd</td>
<td>0.4 M S Of Valverde Rd</td>
<td>42</td>
<td>Timber</td>
<td>Stringer</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AB0092.02</td>
<td>Albuquerque Sub</td>
<td>Belen</td>
<td>Garcia Arroyo</td>
<td>140 M S Of E Aragon Rd</td>
<td>14</td>
<td>Timber</td>
<td>Stringer</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0000.50</td>
<td>Lazy Subdivision</td>
<td>Lamy</td>
<td>Unnamed Arroyo</td>
<td>0.2 miles north of Hwy 5</td>
<td>84</td>
<td>Timber</td>
<td>Stringer</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0002.20</td>
<td>Lazy Subdivision</td>
<td>Lamy</td>
<td>Unnamed Arroyo</td>
<td>0.57 miles west of Hwy 28</td>
<td>83</td>
<td>Timber</td>
<td>Stringer</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0002.30</td>
<td>Lazy Subdivision</td>
<td>Lamy</td>
<td>Unnamed Arroyo</td>
<td>0.15 miles north of Prata</td>
<td>81</td>
<td>Timber</td>
<td>Stringer</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0003.00</td>
<td>Lazy Subdivision</td>
<td>Elkhorn</td>
<td>Cañada De Los Atalmas</td>
<td>0.5 miles north of Prata</td>
<td>70</td>
<td>Steel</td>
<td>Stringer</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0004.80</td>
<td>Lazy Subdivision</td>
<td>Elkhorn</td>
<td>Unnamed Arroyo</td>
<td>0.9 M S Of Ave Eldorado</td>
<td>42</td>
<td>Steel</td>
<td>Stringer</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0005.50</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Drainage Area</td>
<td>0.25 M S Of Ave Eldorado</td>
<td>25</td>
<td>Timber</td>
<td>Stringer</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0005.70</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Drainage Area</td>
<td>0.81 M M Of Ave Eldorado</td>
<td>66</td>
<td>Timber</td>
<td>Stringer</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0006.10</td>
<td>Lazy Subdivision</td>
<td>Pueblo Canon</td>
<td>0.36 M S Of South Ave Vista Gran</td>
<td>42</td>
<td>Timber</td>
<td>Stringer</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L0007.10</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Canion Abocho</td>
<td>57 M N Ave Vista Grande</td>
<td>97</td>
<td>Timber</td>
<td>Stringer</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0007.40</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Drainage Area</td>
<td>8 M N Ave Vista Grande</td>
<td>14</td>
<td>Masonry</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>L0008.10</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Avenida Guadalupe</td>
<td>1.5 M M M Ave Vista Grande</td>
<td>55</td>
<td>Timber</td>
<td>Stringer</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0009.40</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Avenida Cancha</td>
<td>0.5 M S Of Nine Mile Rd</td>
<td>155</td>
<td>Timber</td>
<td>Stringer</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0010.00</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Unnamed Arroyo</td>
<td>0.5 M S Of Leaping Powder</td>
<td>68</td>
<td>Timber</td>
<td>Stringer</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0010.45</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Canion De Las Minas</td>
<td>16 M S Of Leaping Road</td>
<td>19</td>
<td>Masonry</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>L0010.90</td>
<td>Lazy Subdivision</td>
<td>Eldorado</td>
<td>Canion De Las Minas</td>
<td>25 M S Of Leaping Powder</td>
<td>68</td>
<td>Timber</td>
<td>Stringer</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L0012.50</td>
<td>Lazy Subdivision</td>
<td>Santa Fe</td>
<td>Arroyo Hondo</td>
<td>26 M S Of Rabbit Rd</td>
<td>134</td>
<td>Timber</td>
<td>Stringer</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0000.77</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Unnamed Arroyo & Ditch</td>
<td>0.9 M W Of Waldo Rd</td>
<td>20</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SF0000.97</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Drainage Ditch</td>
<td>0.8 M W Of Waldo Rd</td>
<td>20</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SF0001.10</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Ditch</td>
<td>1.6 M S Of Waldo Road</td>
<td>21</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SF0001.15</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Ranch Access Rd</td>
<td>0.5 M W Of Waldo Rd</td>
<td>16</td>
<td>Concrete</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SF0001.34</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Drainage Ditch</td>
<td>1.7 M S Of Waldo Rd</td>
<td>20</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SF0001.74</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Washion Canyon Rd</td>
<td>From 1 W Of Waldo ranch</td>
<td>220</td>
<td>Pk Concrete</td>
<td>Pk Concrete</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0001.10</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Local Drainage</td>
<td>19 M S Of Waldo Rd</td>
<td>18</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>BRIDGE NO</td>
<td>SUBDIVISION</td>
<td>SIDING</td>
<td>FEATURE INTERSECTED</td>
<td>LOCATION</td>
<td>LENGTH</td>
<td>MATERIAL/MAIN</td>
<td>DESIGN/MATERIAL</td>
<td>DECK</td>
<td>SUPER</td>
<td>SUB</td>
<td>CULVERT</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>SF0002.36</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Local Drainage</td>
<td>0.65 M E of Waldo Rd</td>
<td>19</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SF0003.57</td>
<td>Santa Fe Sub</td>
<td>Waldo</td>
<td>Local Drainage</td>
<td>1.86 M E of Waldo Rd</td>
<td>25</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SF0009.22</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>Bonanza Creek</td>
<td>At Bonanza Creek</td>
<td>188</td>
<td>PS Concrete</td>
<td>Stringer</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0011.59</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>NM Route 599 (S F Road)</td>
<td>RR Over NM 599</td>
<td>221</td>
<td>PS Concrete</td>
<td>Stringer</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0013.44</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>Route 14 Mainline</td>
<td>RR Over NM-14</td>
<td>215</td>
<td>PS Concrete</td>
<td>Stringer</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0013.58</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>Route 14 Ramp B</td>
<td>RR Over NM-14 Ramp B</td>
<td>129</td>
<td>PS Concrete</td>
<td>Stringer</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0014.20</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>Local Drainage</td>
<td>0.53 M South of W, Zia Rd</td>
<td>27</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SF0014.50</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>Drainage Ditch</td>
<td>0.22 miles south of W 28</td>
<td>171</td>
<td>PS Concrete</td>
<td>Box Beam</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0015.05</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>Local Drainage</td>
<td>0.2 miles north of W 28</td>
<td>109</td>
<td>Concrete</td>
<td>Box Beam</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0015.38</td>
<td>Santa Fe Sub</td>
<td>Santa Fe Siding</td>
<td>Local Drainage</td>
<td>0.34 M E of S, Michael Rd</td>
<td>17</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SF0015.68</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>S Richardson Ave,</td>
<td>RR Over S Richardson Ave,</td>
<td>183</td>
<td>PS Concrete</td>
<td>Stringer</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SF0015.80</td>
<td>Santa Fe Sub</td>
<td>Santa Fe Siding</td>
<td>Local Drainage</td>
<td>10 M S of St. Michaels</td>
<td>14</td>
<td>Concrete</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SF0015.90</td>
<td>Santa Fe Sub</td>
<td>Santa Fe</td>
<td>Local Drainage</td>
<td>0.2 M W Of San Mateo Rd</td>
<td>23</td>
<td>Steel</td>
<td>Culvert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
New Mexico Department Of Transportation
Bridge Management Section
Railroad Bridge Inspection Report

<table>
<thead>
<tr>
<th>Bridge Number:</th>
<th>AB0891.40</th>
<th>Inspection Date (90):</th>
<th>3/25/2011</th>
</tr>
</thead>
</table>

Bridge Data

<table>
<thead>
<tr>
<th>NMDOT District No. =</th>
<th>District 3</th>
<th>County =</th>
<th>43 SANDOVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Carried =</td>
<td>Albuquerque Sub</td>
<td>Mile Post =</td>
<td>891.398 mi</td>
</tr>
<tr>
<td>Structure Length =</td>
<td>55.8 ft</td>
<td>Frequency =</td>
<td>12 months</td>
</tr>
<tr>
<td>Deck Area =</td>
<td>782. sq. ft</td>
<td>Skew =</td>
<td>0.00 °</td>
</tr>
<tr>
<td>Posting status =</td>
<td>A Open, no restriction</td>
<td>Latitude =</td>
<td>35d 13' 54"</td>
</tr>
<tr>
<td>Scour Critical =</td>
<td>6 Calc not made</td>
<td>Longtitude =</td>
<td>106d 35' 07"</td>
</tr>
<tr>
<td>Type of Service on =</td>
<td>2 Railroad</td>
<td>Type Service under =</td>
<td>5 Waterway</td>
</tr>
<tr>
<td>Location =</td>
<td>.31 Mi N Sandia Lakes Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:

4 - Simple Spans at 13'-4", 14'-0 1/4", 13'-11 3/4", and 13'-4" span length. Ballast Timber Deck, Steel Rolled Beams On Steel Caps And Timber Piles. Main Load Carrying Members: 4 Steel Stringers

Condition

Deck =	6 Satisfactory
Superstr. =	6 Satisfactory
Substr. =	6 Satisfactory
Channel/Channel Protection =	6 Bank Slumping
Waterway Adequacy =	6 Equal Minimum
Underclearance, Vertical and Horizontal =	N

Load Rating And Posting

Normal Rating =	54.22
Design Load =	8 Railroad
Width Curb to Curb =	14.0 ft
Curb/Sdwlk Wdth L =	0.5 ft
Owner =	State Highway Agency
Main Span Material/Design =	3 Steel
Number of Spans Main Unit =	4
Length Max Span =	14.0 ft

Team Leader	**Date**
Reviewed By | **Date**

Bridge Number: AB0891.40 | Page 1 of 5
Bridge Number: AB0891.40

New Mexico Department Of Transportation

Bridge Management Section

Railroad Bridge Inspection Report

<table>
<thead>
<tr>
<th>FC Frequency = NA</th>
<th>UW Frequency = NA</th>
<th>SI Frequency = NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC Inspection Date = NA</td>
<td>UW Inspection Date = NA</td>
<td>SI Date = NA</td>
</tr>
<tr>
<td>Element Frequency = 12 months</td>
<td>Next UW Inspection = NA</td>
<td>Next SI = NA</td>
</tr>
<tr>
<td>Element Inspection Date = 03/25/2011</td>
<td>Next Elem. Insp. Due = 03/25/2012</td>
<td>Next FC Inspection = NA</td>
</tr>
</tbody>
</table>

Historical Significance = 3 Possibly eligible for

Wearing Surface = 8 Gravel

Deck Protection = None

Approach Span Material =

Minimum Vertical Clearance Over Bridge = 328.1 ft

Minimum Vertical Underclearance Reference =

Minimum Lateral Underclearance Reference R =

Minimum Lateral Underclearance Reference L =

Stay In Place Forms = No

SIP Notes:

Approach Track Condition:
Embankment is satisfactory condition. 132 lb rail on timber ties. Timber ties are weathered and some are split. Track pumping over Span #2. Gauge distance from centerline of track to edge of deck on the TTNorth side is 7'-0 1/2" at Bent #1, 7'-0" at the middle, and 6'-11 1/2" at Bent #5. In satisfactory condition. Shoulders in satisfactory condition.

Channel and Channel Protection:
No channel - High water crossing. Appears to be location where water ponds. No signs or high water detectors

Recommendations and Inspection Notes:
Long Term: 1. Continue to monitor the condition of the bridge.

Notes:
Bridge over water ponding area. There is no defined channel. Recommend replacing structure with culvert sized for the drainage.
ELEMENT CONDITION STATE DATA

<table>
<thead>
<tr>
<th>Str Unit</th>
<th>Elem/Env</th>
<th>Description</th>
<th>Units</th>
<th>Total Qty</th>
<th>% in 1</th>
<th>Qty. St. 1</th>
<th>% in 2</th>
<th>Qty. St. 2</th>
<th>% in 3</th>
<th>Qty. St. 3</th>
<th>% in 4</th>
<th>Qty. St. 4</th>
<th>% in 5</th>
<th>Qty. St. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/2</td>
<td>Structure Unit</td>
<td>Timber Deck (SF)</td>
<td>782</td>
<td>100 %</td>
<td>0</td>
<td>0 %</td>
<td>782</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>11/2</td>
<td>Structure Unit</td>
<td>Unpainted Steel Stringer (LF)</td>
<td>223</td>
<td>100 %</td>
<td>0</td>
<td>0 %</td>
<td>223</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>11/2</td>
<td>Structure Unit</td>
<td>Timber Column (EA)</td>
<td>30</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>30</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>11/2</td>
<td>Structure Unit</td>
<td>Unpainted Steel Cap (LF)</td>
<td>32</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>32</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>11/2</td>
<td>Structure Unit</td>
<td>Moveable Bearing (roller, sliding, etc) (EA)</td>
<td>70</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>70</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
<td>0</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Element Notes

- **Timber Deck - Bare**
 - Ballast deck; timber deck planks. Creosote leaching from the deck. Some checks on the deck planks (14 ft deck width). In satisfactory condition. 6.0” of ballast. Depth from bottom of tie to top of deck. Ballast is low. In fair condition. One timber curb per span; 12 1/4” high. Minor checks and splits, and broken curb at TTEast end. In satisfactory condition.

- **Unpainted Steel Stringer**
 - 4 Steel stringers (rolled beam sections) spaced at 3 ft on center. No signs of fatigue cracks. Some surface rust. Welded wedges to top of bearing stiffeners and beam top flange. In satisfactory condition. Diaphragms. Near the ends of spans, there are no clips between the deck and the beams. Bolted steel plate diaphragms. Some surface rust. In satisfactory condition.

- **Timber Column or Pile Extension**
 - 14 1/8” Depth steel caps on six timber pilings. No signs of fatigue cracks. Minor checks and splits on the timber pilings. Pile #6 at Bent #2 is split. At Bent #3, Piles #2, #3 and #6 are split. Piles #2, #3, #5 & #6 on Bent #4 are split. In satisfactory condition.

- **Unpainted Steel Cap**
 - 14 1/8” Depth steel caps on six timber pilings. No signs of fatigue cracks. Some surface rust on the caps. In satisfactory condition.

- **Moveable Bearing (roller, sliding, etc)**
 - 1/2” thick metal bearing plates. Some surface rust. In satisfactory condition.
New Mexico Department Of Transportation
Bridge Management Section
Railroad Bridge Inspection Report

PAST INSPECTION

Inspection Date: 03/25/2011
Type: 1 Regular NBI

Inspector: RPADI06
Pontis User Key: RPADI06 - RUBEN PADILLA

Scope:

- NBI:
- Other:
- Element:
- Underwater:
- Fracture Critical:

INSPECTION NOTES

PAST INSPECTION

Inspection Date: 03/10/2010
Type: 1 Regular NBI

Inspector: RPADI06
Pontis User Key: RPADI06 - RUBEN PADILLA

Scope:

- NBI:
- Other:
- Element:
- Underwater:
- Fracture Critical:

INSPECTION NOTES

New Mexico Department Of Transportation
Bridge Management Section Railroad Bridge Inspection Report

PAST INSPECTION
Inspection Date: 02/16/2009 Type: 1 Regular NBI
Inspector: rpadi06 Pontis User Key: RPADI06 - RUBEN PADILLA

Scope:
- NBI: ☑
- Other: ☐
- Element: ☑
- Underwater: ☐
- Fracture Critical: ☐

INSPECTION NOTES

INSPECTOR WORK CANDIDATES

Bridge Number: AB0891.40
APPENDIX D
BRIDGE CONDITION CODES
NMDOT Railroad Condition Ratings

CODE DEFINITION

N NOT APPLICABLE

9 EXCELLENT

8 VERY GOOD - no problems noted.

7 GOOD - some minor problems.

6 SATISFACTORY - structural elements show minor deterioration.

5 FAIR - primary structural elements are sound-may have minor section loss, cracking, spalling or scour.

4 POOR - advanced section loss, deterioration, spalling or scour.

3 SERIOUS - loss of section, deterioration, spalling or scour have seriously affected primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.

2 CRITICAL - advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in concrete may be present or scour may have removed substructure support. Unless closely monitored it may be necessary to close the bridge until corrective action is taken.

1 IMMINENT FAILURE - major deterioration or section loss present in critical structural components or obvious vertical or horizontal movement affecting structure stability. Bridge is closed to traffic but corrective action may put back in light service.

0 FAILED - out of service - beyond corrective action.
APPENDIX E
PONTIS WORK ORDER
This input screen shows how data for the repair or replacement of a bridge is input into the Pontis Database system. This input is used for scheduling and estimating the cost for repair or replacement projects.
APPENDIX F
PONTIS COMPLETED WORK ORDER
This report shows an output from the NMDOT Pontis Bridge Record tracking system that tracks the completed repairs or replacement of bridges on the NMDOT rail system.
APPENDIX G

RAILROAD BRIDGE LOAD RATING FORM
New Mexico Department of Transportation

RAILROAD BRIDGE RATING FORM

Today's date: Sept. 29, 2009
Name of Person Completing Form: Thelma A. Castro

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>Structure Number: AB0872.30</th>
<th>Feature Intersected: None/High Water Crossing & Access</th>
<th>Dirt Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Number: (As Built)</td>
<td>Year Built: 2001</td>
<td></td>
</tr>
<tr>
<td>Location MP: 872.30</td>
<td>Span No.: three</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Len.: 65.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main Load Carrying Member: 2'-20" Precast Concrete Slabs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location Latitude/Longitude: 35.46060 N - 106.41111d W</td>
<td></td>
</tr>
</tbody>
</table>

RATING APPROACH SUMMARY

<table>
<thead>
<tr>
<th>Rating Method</th>
<th>Live Loads Checked</th>
<th>Other—Identify:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ ASR □ LFR □ LRFR</td>
<td>☑ Cooper E80</td>
<td>□ Alternative Live Load</td>
</tr>
</tbody>
</table>

Criteria Used in Rating

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Pedestrian Walkway</th>
<th>Ballast</th>
<th>Deck</th>
<th>Structure Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Deck Girder</td>
<td>□ Yes</td>
<td>☑ No</td>
<td>☑ No</td>
<td>Deck (58) = 7</td>
</tr>
<tr>
<td>☑ I-Beam</td>
<td></td>
<td>☑ Yes</td>
<td>☑ Yes</td>
<td>Super (59) = 7</td>
</tr>
<tr>
<td>☑ Thru Girder</td>
<td></td>
<td></td>
<td></td>
<td>Sub (60) = 7</td>
</tr>
<tr>
<td>☑ Thru Truss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Deck Truss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Prestressed Concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One side/both sides: ☑ 1 □ 2

Depth (in): 9.5
Thickness (in): 20.0 (thickness of slabs)

Notes, additional loads, comments or deviation from general rating practice: Live load is assumed to be equally distributed to the slabs.

CALCULATION TOOLS OR METHODS USED:
Structural calculations prepared in Mathcad (according to American Railway Engineering & Maintenance-of-Way Association, AREMA).

Quality Control Method, if any—Describe: An evaluator extracted information from bridge inspection reports and design data from plans, then prepared structural calculations. Ratings checked and approved by Stephen M. Dick.

CONTROLLING RATING

<table>
<thead>
<tr>
<th>Controlling Element</th>
<th>Controlling Limit State</th>
<th>Controlling Span Length (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Stringer</td>
<td>Bending</td>
<td>20.92</td>
</tr>
<tr>
<td>☑ Floor Beam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Girdor or I-Beam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Truss Member</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Substructure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LFR or ASR Rating

<table>
<thead>
<tr>
<th>Normal Rating Factor (E80)</th>
<th>Maximum Rating Factor (E80)</th>
<th>Normal Rating Factor (Alt)</th>
<th>Maximum Rating Factor (Alt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_LFR = 1.044</td>
<td>R_MAX = 1.741</td>
<td>R_LFR = 1.044</td>
<td>R_MAX = 1.741</td>
</tr>
</tbody>
</table>

NORMAL RATING

| Cooper E 83.5 | NORMAL RATING | Cooper E 139.3 | MAXIMUM RATING |

MAXIMUM RATING

| Cooper E | MAXIMUM RATING |

<table>
<thead>
<tr>
<th>P.E.</th>
<th>Print Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E.</td>
<td>Stephen M. Dick</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/29/09</td>
<td>[Signature]</td>
</tr>
</tbody>
</table>

Rating Organization

Wilson & Company, Inc., Engineers & Architects

NMDOT Approval

NMDOT Bridge Management Unit

PLANS AND FILES

Electronic Files Used to Model and Rate Bridge Available at, or delivered to:
OR Paper Documentation for Bridge Rating Available at, or delivered to: CD and Bridge Rating Forms delivered via UPS addressed to Ray M. Trujillo, State Bridge Engineer, September 30, 2009.

Plans Available at, or delivered to: Plans delivered via UPS addressed to Ray M. Trujillo, State Bridge Engineer, September 30, 2009.

Structure Number: AB0872.30